Home Neglected Parasitic Diseases Drug Development Consortium News Contact
© IP Research Consulting 2014
Summary Objectives Concepts Pipeline ADMETox Workpackages Bibliography Print as PDF


     (1)     Stuart K, Brun R, Croft S, Fairlamb A, Gurtler RE, McKerrow J et al. Kinetoplastids: related protozoan pathogens, different diseases. J Clin Invest 2008; 118(4):1301-1310. (2) Croft SL, Seifert K, Yardley V. Current scenario of drug development for leishmaniasis. Indian J Med Res 2006; 123(3):399-410. (3) Barrett MP, Boykin DW, Brun R, Tidwell RR. Human African trypanosomiasis: pharmacological re- engagement with a neglected disease. Br J Pharmacol 2007; 152(8):1155-1171. (4) Renslo AR, McKerrow JH. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2006; 2(12):701-710. (5) Dujardin JC, Gonzalez-Pacanowska D, Croft SL, Olesen OF, Spath GF. Collaborative actions in anti- trypanosomatid chemotherapy with partners from disease endemic areas. Trends Parasitol 2010; 26(8):395-403. (6) Chatelain E, Ioset JR. Drug discovery and development for neglected diseases: the DNDi model. Drug Des Devel Ther 2011; 5:175-181. (7) Frearson JA, Wyatt PG, Gilbert IH, Fairlamb AH. Target assessment for antiparasitic drug discovery. Trends Parasitol 2007; 23(12):589-595. (8) Pink R, Hudson A, Mouries MA, Bendig M. Opportunities and challenges in antiparasitic drug discovery. Nat Rev Drug Discov 2005; 4(9):727-740. (9) Siqueira-Neto JL, Song OR, Oh H, Sohn JH, Yang G, Nam J et al. Antileishmanial high-throughput drug screening reveals drug candidates with new scaffolds. PLoS Negl Trop Dis 2010; 4(5):e675. (10) Mackey ZB, Baca AM, Mallari JP, Apsel B, Shelat A, Hansell EJ et al. Discovery of trypanocidal compounds by whole cell HTS of Trypanosoma brucei. Chem Biol Drug Des 2006; 67(5):355-363. (11) Engel JC, Ang KK, Chen S, Arkin MR, McKerrow JH, Doyle PS. Image-based high-throughput drug screening targeting the intracellular stage of Trypanosoma cruzi, the agent of Chagas' disease. Antimicrob Agents Chemother 2010; 54(8):3326-3334. (12) Gilbert IH, Leroy D, Frearson JA. Finding new hits in neglected disease projects: target or phenotypic based screening? Curr Top Med Chem 2011; 11(10):1284-1291. (13) Maser P, Wittlin S, Rottmann M, Wenzler T, Kaiser M, Brun R. Antiparasitic agents: new drugs on the horizon. Curr Opin Pharmacol 2012; 12(5):562-566. (14) De MG, Ang KK, Chen S, Arkin MR, Engel JC, McKerrow JH. A screen against Leishmania intracellular amastigotes: comparison to a promastigote screen and identification of a host cell- specific hit. PLoS Negl Trop Dis 2011; 5(7):e1253. (15) Hoffer L, Renaud JP, Horvath D. Fragment-based drug design: computational & experimental state of the art. Comb Chem High Throughput Screen 2011; 14(6):500-520. (16) Tavares J, Ouaissi A, Silva AM, Lin PK, Roy N, Cordeiro-da-Silva A. Anti-leishmanial activity of the bisnaphthalimidopropyl derivatives. Parasitol Int 2012; 61(2):360-363. (17) US-DHSS Challenges and Opportunities.  2004. 2-2-2013. Ref Type: Internet Communication (18) Bantscheff M, Drewes G. Chemoproteomic approaches to drug target identification and drug profiling. Bioorg Med Chem 2012; 20(6):1973-1978. (19) Brown D. Future pathways for combinatorial chemistry. Mol Diversity 1996; 2:217-222. (20) Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001; 46(1-3):3-26. (21) Carr RA, Congreve M, Murray CW, Rees DC. Fragment-based lead discovery: leads by design. Drug Discov Today 2005; 10(14):987-992. (22) Gunatilleke SS, Calvet CM, Johnston JB, Chen CK, Erenburg G, Gut J et al. Diverse inhibitor chemotypes targeting Trypanosoma cruzi CYP51. PLoS Negl Trop Dis 2012; 6(7):e1736. (23) Major LL, Smith TK. Screening the MayBridge Rule of 3 Fragment Library for Compounds That Interact with the Trypanosoma brucei myo-Inositol-3-Phosphate Synthase and/or Show Trypanocidal Activity. Mol Biol Int 2011; 2011:389364. (24) Zimmermann S, Kaiser M, Brun R, Hamburger M, Adams M. Cynaropicrin: the first plant natural product with in vivo activity against Trypanosoma brucei. Planta Med 2012; 78(6):553-556. (25) Tavares J, Ouaissi A, Kong Thoo LP, Loureiro I, Kaur S, Roy N et al. Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1. ChemMedChem 2010; 5(1):140-147. (26) Souza-Fagundes EM, Cota BB, Rosa LH, Romanha AJ, Correa-Oliveira R, Rosa CA et al. In vitro activity of hypnophilin from Lentinus strigosus: a potential prototype for Chagas disease and leishmaniasis chemotherapy. Braz J Med Biol Res 2010; 43(11):1054-1061. (27) Doyle PS, Zhou YM, Engel JC, McKerrow JH. A cysteine protease inhibitor cures Chagas' disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 2007; 51(11):3932- 3939. (28) Doyle PS, Chen CK, Johnston JB, Hopkins SD, Leung SS, Jacobson MP et al. A nonazole CYP51 inhibitor cures Chagas' disease in a mouse model of acute infection. Antimicrob Agents Chemother 2010; 54(6):2480-2488. (29) Costa LS, Rodrigues V, Garrido J, Borges F, Kong Thoo LP, Cordeiro da SA. In vitro evaluation of bisnaphthalimidopropyl derivatives loaded into pegylated nanoparticles against Leishmania infantum protozoa. Int J Antimicrob Agents 2012; 39(5):424-430. (30) Costa Lima SA, Resende M, Silvestre R, Tavares J, Ouaissi A, Lin PK et al. Characterization and evaluation of BNIPDaoct-loaded PLGA nanoparticles for visceral leishmaniasis: in vitro and in vivo studies. Nanomedicine (Lond) 2012; 7(12):1839-1849. (31) Cleghorn LA, Woodland A, Collie IT, Torrie LS, Norcross N, Luksch T et al. Identification of inhibitors of the Leishmania cdc2-related protein kinase CRK3. ChemMedChem 2011; 6(12):2214- 2224. (32) Spinks D, Ong HB, Mpamhanga CP, Shanks EJ, Robinson DA, Collie IT et al. Design, synthesis and biological evaluation of novel inhibitors of Trypanosoma brucei pteridine reductase 1. ChemMedChem 2011; 6(2):302-308. (33) Mikus J, Steverding D. A simple colorimetric method to screen drug cytotoxicity against Leishmania using the dye Alamar Blue. Parasitol Int 2000; 48(3):265-269. (34) Claes F, Vodnala SK, van RN, Boucher N, Lunden-Miguel H, Baltz T et al. Bioluminescent imaging of Trypanosoma brucei shows preferential testis dissemination which may hamper drug efficacy in sleeping sickness. PLoS Negl Trop Dis 2009; 3(7):e486. (35) McKerrow J. unpublished results. unpublished 2013. (36) Carlson JC, Li S, Gunatilleke SS, Anzai Y, Burr DA, Podust LM et al. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes. Nat Chem 2011; 3(8):628-633. (37) Debnath A, Parsonage D, Andrade RM, He C, Cobo ER, Hirata K et al. A high-throughput drug screen for Entamoeba histolytica identifies a new lead and target. Nat Med 2012; 18(6):956-960. (38) McKerrow JH, Doyle PS, Engel JC, Podust LM, Robertson SA, Ferreira R et al. Two approaches to discovering and developing new drugs for Chagas disease. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:263-269. (39) Brinen LS, Hansell E, Cheng J, Roush WR, McKerrow JH, Fletterick RJ. A target within the target: probing cruzain's P1' site to define structural determinants for the Chagas' disease protease. Structure 2000; 8(8):831-840. (40) Lee GM, Balouch E, Goetz DH, Lazic A, McKerrow JH, Craik CS. Mapping inhibitor binding modes on an active cysteine protease via nuclear magnetic resonance spectroscopy. Biochemistry 2012; 51(50):10087-10098. (41) Vergnes B, Sereno D, Tavares J, Cordeiro-da-Silva A, Vanhille L, Madjidian-Sereno N et al. Targeted disruption of cytosolic SIR2 deacetylase discloses its essential role in Leishmania survival and proliferation. Gene 2005; 363:85-96. (42) Kadam RU, Kiran VM, Roy N. Comparative protein modeling and surface analysis of Leishmania sirtuin: A potential target for antileishmanial drug discovery. Bioorg Med Chem Lett 2006; 16(23):6013-6018. (43) Kadam RU, Tavares J, Kiran VM, Cordeiro A, Ouaissi A, Roy N. Structure function analysis of Leishmania sirtuin: an ensemble of in silico and biochemical studies. Chem Biol Drug Des 2008; 71(5):501-506. (44) Chen CK, Leung SS, Guilbert C, Jacobson MP, McKerrow JH, Podust LM. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl Trop Dis 2010; 4(4):e651. (45) Gowri VS, Ghosh I, Sharma A, Madhubala R. Unusual domain architecture of aminoacyl tRNA synthetases and their paralogs from Leishmania major. BMC Genomics 2012; 13:621. (46) Stern AL, Burgos E, Salmon L, Cazzulo JJ. Ribose 5-phosphate isomerase type B from Trypanosoma cruzi: kinetic properties and site-directed mutagenesis reveal information about the reaction mechanism. Biochem J 2007; 401(1):279-285. (47) Smith TK, Young BL, Denton H, Hughes DL, Wagner GK. First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett 2009; 19(6):1749-1752. (48) Niewiadomski S, Beebeejaun Z, Denton H, Smith TK, Morris RJ, Wagner GK. Rationally designed squaryldiamides - a novel class of sugar-nucleotide mimics? Org Biomol Chem 2010; 8(15):3488- 3499. (49) Young SA, Smith TK. The essential neutral sphingomyelinase is involved in the trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma brucei. Mol Microbiol 2010; 76(6):1461-1482. (50) Smith TK. Validating choline metabolism as a drug target in the fight against Trypanosoma brucei. International Innovation 2012;(Oct):18-21. (51) Major LL, Denton H, Smith TK. Coupled enzyme activity and thermal shift screening of the Maybridge rule of 3 fragment library against Trypanosoma brucei choline kinase; a genetically validated drug target. In: Hany A.El-Shemy, editor. Drug Discovery. In Tech; 2013. (52) Denton H, Fyffe S, Smith TK. GDP-mannose pyrophosphorylase is essential in the bloodstream form of Trypanosoma brucei. Biochem J 2010; 425(3):603-614. (53) Mackey ZB, Koupparis K, Nishino M, McKerrow JH. High-throughput analysis of an RNAi library identifies novel kinase targets in Trypanosoma brucei. Chem Biol Drug Des 2011; 78(3):454-463. (54) Jessani N, Cravatt BF. The development and application of methods for activity-based protein profiling. Curr Opin Chem Biol 2004; 8(1):54-59. (55) Speers AE, Cravatt BF. Chemical strategies for activity-based proteomics. Chembiochem 2004; 5(1):41-47. (56) Speers AE, Cravatt BF. Profiling enzyme activities in vivo using click chemistry methods. Chem Biol 2004; 11(4):535-546. (57) European Medicines Agency (EMEA). Guideline on Strategies to Identify and Mitigate Risks for First-in-Human Clinical Trials with Investigational Medicinal Products. European Medicines Agency: Committee for Medicinal Products for Human Use . 2007. 3-2-2013. Ref Type: Internet Communication (58) Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol 2000; 32(1):56-67. (59) Milton MN, Horvath CJ. The EMEA guideline on first-in-human clinical trials and its impact on pharmaceutical development. Toxicol Pathol 2009; 37(3):363-371. (60) Pitta MG, Romano A, Cabantous S, Henri S, Hammad A, Kouriba B et al. IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J Clin Invest 2009; 119(8):2379-2387. (61) International Conference on Harmonization. International Conference on Harmonization (ICH)—Guidance for Industry: S8 Immunotoxicity Studies for Human Pharmaceuticals.  2006. 3-3- 2013. Ref Type: Internet Communication (62) Grimaldi JG. The utility of rhesus monkey (Macaca mulatta) and other non-human primate models for preclinical testing of Leishmania candidate vaccines. Mem Inst Oswaldo Cruz 2008; 103(7):629- 644. (63) Rodrigues V, Laforge M, Campillo-Gimenez L, Oliveira A, Dinis-Oliveira RJ, Ouaissi A et al. Leishmania infantum infection of rhesus macaques causes abortive T follicular-like helper differentiation. submitted 2013.

Scientific programme

© IP Research Consulting 2014